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It is shown that space-times admitting more than one independent Kitling-Yano 
tensor belong to a small collection of highly idealised space-times. A new 
characterization of Robertson-Walker space-times arises as a corollary of the 
main theorem. 

1. INTRODUCTION 

There has been some recent interest in Killing-Yano (KY) tensors in 
general relativity. The purpose of the present paper is to establish some 
further general results concerning the existence of  KY tensors and to show 
that space-times admitting more than one independent KY tensor belong 
to a small collection of highly specialized space-times. Only local problems 
will be considered here. 

Within a connected coordinate domain U of a space-time a KY tensor 
is taken as a smooth bivector F that is nowhere zero in U and satisfies 

Fob;c + Fac;b = 0 (1) 

where a semicolon denotes a covariant derivative with respect to the space- 
time Lorentz metric gob on U (and the latter is taken with signature 
( - ,  + ,  + ,  +)) .  A KY tensor is called simple if it is a simple bivector at 
each point of  U. Such a KY tensor will then be called timelike (respectively 
spacelike, null) if its blade is everywhere timelike (respectively spacelike, 
null). A KY tensor is called nonsimple if it is not simple at any point of 
U. 2 If  a KY tensor is not a simple bivector at p c U, then it uniquely 
determines a canonical pair of orthogonal blades at p, one timelike (and 
spanned by the two distinct null eigendirections of the bivector at p) and 
one spacelike. In this sense, nonnull, simple KY tensors also determine a 

tDepartment of Mathematics, University of Aberdeen, Aberdeen AB9 2TY, Scotland. 
2The terms simple and nonsimple may be taken as opposites in the local sense considered 
here because if a bivector is nonsimple at p ~ U it remains so in some neighborhood of p 
which may be then taken as the set U. 
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canonical pair of  orthogonal blades at each p ~ U, its actual blade and its 
orthogonal complement.  

2. GENERAL RESULTS ON K I L L I N G - Y A N O  TENSORS 

The following nine results will now be established concerning KY 
tensors on U. Many are believed to be new. 

(i) There are at most ten independent solutions to equation (1) and 
this maximum occurs if and only if the domain U has constant curvature. 

(ii) I f  a null KY tensor F is admitted, the Weyl tensor is at each p ~ U 
either zero or of  Petrov type N with the unique null direction in the blade 
of F as repeated principal null direction. I f  a nonnull KY tensor F is 
admitted, the Weyl tensor is at each p ~ U either zero or of  Petrov type D 
with its two repeated principal null directions spanning the blade of F if 
it is timelike, the 2-space orthogonal to the blade of F if it is spacelike, 
and the timelike member  of  its canonical pair of  blades if it is nonsimple. 

(iii) I f  a simple KY tensor is admitted, then each member  of  its blade 
is a Ricci eigenvector with the same eigenvalue at each p ~ U. 

(iv) I f  F is a KY tensor that is not simple at p, then each member  of  
the timelike canonical blade at p is a Ricci eigenvector with the same 
eigenvalue. Similar comments apply to the spacelike canonical blade at p 
(but the two resulting eigenvalues need not be equal). 

(v) I f  a simple KY tensor F is admitted, the natural map that associates 
p c U with the blade of F at p is an integrable (surface-forming) two- 
dimensional distribution (in the sense of Frobenius) on U. 

(vi) I f  no point of  U has constant curvature and two independent KY 
tensors are admitted, one of which is nonsimple, then no further independent 
KY tensors are admitted. Also, U admits two independent recurrent null 
vector fields l and n. The two KY tensors determine the same pair of  
canonical blades at each p ~ U with the timelike one containing the recurrent 
null vector fields. By taking appropriate linear combinations of  these KY 
tensors, one can take them as two covariantly constant, orthogonal, simple 
bivectors whose blades are the same as the canonical pair of  blades of  the 
original KY tensors. At each p ~ U, the Petrov type is O or D with l and 
n spanning the repeated principal null directions and the Ricci tensor is of  
Segr6 type {(1, 1)(1 1)} or its degeneracy with eigenvalue degeneracies on 
the above canonical pair of  blades. The Ricci tensor is not zero at any p ~ U. 

(vii) I f  no point of  U has constant curvature and a null KY tensor F 
is admitted, the repeated principal null direction 1 of  F may be scaled so 
that it is a null Killing vector field and gives rise to a null, shear-free, 
expansion-free, twist-free geodesic congruence in U. At each p c U, the 
Petrov type is O or N with 1 spanning the repeated principal null direction. 
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If  the Ricci tensor is zero at each p ~ U, then the dual /~ of F is also a KY 
tensor (and no other independent KY tensors are admitted) and U is (part 
of) a pp-wave space-time. 

(viii) If  no point of U has constant curvature and two independent 
null KY tensors with the same repeated principal null direction 1 are 
admitted, they may be taken as a dual pair of covariantly constant null KY 
tensors and 1 may be scaled to a constant null vector field I a on U. No 
further KY tensors are admitted and the Petrov type is either O or N with 
l as repeated principal null direction. The Ricci tensor is either zero or 
proportional to  lal  b. 

(ix) If no point of  U has constant curvature and if two independent, 
simple, nonnull KY tensors with intersecting blades are admitted, then, if 
at each p ~ U these blades span a spacelike (timelike) 3-space, the metric 
on U is of the Robertson-Walker type ("spacelike" Robertson-Walker type 
with "fluid" flow vector spacelike). It is not possible for them to span a 
null 3-space at each p ~ U. 

Proof: 
(i) This follows by noting that the proof of this result in the positive- 

definite case (Tachibana, 1968) holds in the Lorentz case. 
(ii) This was given for vacuum space-times in Collinson (1974) and 

for the general case in Stephani (1978). 
(iii, iv) The integrability conditions for (1) impose the restrictions 

RacF~b + RbcF~ = 0 (2) 

on the Ricci tensor components Rab (Stephani, 1978). The results (iii) and 
(iv) now follow from the general algebraic study of equation (2) given in 
Hall and Mclntosh (1983). [Details of the algebraic Segr6-type structure of 
the Ricci tensor used later in the paper can be found in Hall (1976, 1984).] 

(v) Because F is smooth and nowhere zero on U, the map that associ- 
ates each p c U with the blade of F can be shown to be a two-dimensional 
smooth distribution on U. Then one may write Fab = 2 r [ a s b ] ,  where r and s 
are nowhere zero, smooth one-forms on U, and where the square brackets 
denote skew-symmetrization. A substitution into (1) and a contraction with 
gaC gives the desired result. 

(vi) Let F be a nonsimple KY tensor in U. The canonical blade 
structure of F determines two two-dimensional distributions on U and so 
one may choose a real tetrad (l, n, x, y) of smooth vector fields on U such 
that l"n,~ = x"x,, =yayo = 1 and all other inner products between tetrad 
members are zero at each p ~ U and 

Fab  = 2Altanb I + 2Bxtayh I (3) 

where A and B are smooth, nowhere zero, real-valued functions on U. It 
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is now clear from (ii)-(iv) that the Petrov type is O or D and that the Ricci 
tensor has Segr6 type { (1, 1 ) (1, 1)} or its degeneracy, this degeneracy occurr- 
ing if and only if the Ricci tensor admits eigenvectors other than those in 
the canonical pair of blades. As a consequence, any other independent KY 
tensor must be nonnull and, whether simple or nonsimple, must determine 
the same canonical pair of blades as F at each p ~ U. Otherwise one could 
find a nonempty, open subset of U where the Weyl tensor vanished and 
where Rab OCgab, that is, where one had constant curvature, contradicting 
the initial assumption. So the other independent KY tensor G must take 
the general form (3) with A and B replaced by, say, a and/3 and where 
now G may be simple over a subset, possibly the whole of U. Also, since 
F is a KY tensor, if q5 is a smooth, nowhere zero, real-valued function on 
U, then ~bF is a KY tensor if and only if q5 is constant on U. As a consequence, 
the independence of F and G over U shows that the matrix 

(a 
is never singular over an open subset of U. Equations (1) and (3) and some 
appropriate contractions with tetrad vectors show (Stephani, 1978) that I 
and n are shear-free, null, geodesic congruences and that 

A,a l  a = A , a n  a = B ,ax"  = B.ay '~ = 0 

where a comma denotes a partial derivative. One also finds that Re [ (A+  
i B ) ( O + i t o ) ] = O ,  where 0 and to denote, respectively, the expansion and 
twist of the congruence /. A similar expression involving a and/3 can be 
obtained from the KY tensor G and the independence of F and G then 
shows that 0 = to = 0 in U. Similar comments hold for the congruence n, 
and so I and n are each expansion-free, twist-free, shear-free, null, geodesic 
congruences. 

Two further linear relationships, this time involving not 0 and to, but 
the real and imaginary parts of the rotation z of the congruence l and the 
analogous quantity 7r for n, can be found and they lead to z = 7r = 0. Thus, 
1 and n are recurrent null vector fields, la; b = lapb, na;b = - n ,  pb for some 
smooth one-form p on P. Then 21[anb] and its dual 2XEaYb] are easily found 
to be covariantly constant bivectors. Using this information in (3) and 
substituting into (1), a contraction with I a shows that A is constant, while 
a contraction with x a shows that B is constant. The rest of the proof of 
(vi) now follows except for the last sentence. This can be established by a 
direct computation of the curvature tensor or, more quickly, by contradic- 
tion, since a vacuum space-time admitting a recurrent null vector field is 
of  Petrov type III  or N, as follows from the Ricci identity. 
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(vii) The results here are essentially known (Collinson, 1974; Stephani,  
1978). One writes Fab =21taXbl, where l~l~ = l~x,  = 0 in U and substitutes 
into (1). Appropr ia te  contract ions show that  I is a shear-free, expansion-free,  
twist-free null geodesic congruence  and hence may be scaled so that  IE,;b I = O. 
The result o f  contract ing (1) first with I ~ and then with x ~ is that  

21a;b = ~9,.lb + la~O b, ~p = --�89 ln(xax~) (4) 

and so 1 '~ =- e - * l  ~ is a Killing vector field in U. I f  the vacuum condi t ion 
holds, then the Riemann tensor  R.bca is o f  Petrov type N and so Rabcal 'a = O. 
This condi t ion together with the integrability condi t ion on the Killing vector  

t _ l,a field 1 '~ gives la;bc -- 0 and so is either a constant  vector field or else ffa;b 

is a constant  bivector field on U. Each of  these alternatives leads to a 
pp-wave metric on U and to the existence o f  a constant  null bivector H on 
U whose repeated principal  null direction is t (Ehlers and Kundt ,  1962). 
It now easily follows that  H a n d / 4  are independent  KY tensors on U and 
that any other  KY tensor  on U is o f  the form a l l + f i r 4  with a and /3 
constants.  

(viii) Suppose  21[~rb] and 21[aSb] a r e  null KY tensors with r and s 
spacelike and or thogonal  to /. On  substituting into (1) and contract ing the 
two resulting equat ions with I a, one obtains la,br ~ =  l~,bS ~ =0 .  As a con- 
sequence,  I is recurrent,  l,,b = lapb for some one-form p on U. To prove that 
I can be scaled to a constant  null vector field on U, one notes f rom (vii) 
that  it may  be scaled to a Killing vector field on U and then uses the obvious 
fact that  a recurrent Killing vector field is necessarily constant.  Next, result 
(iii) shows that at each p c U, every member  o f  the null three-space at p 
spanned  by l, r, and s is a Ricci eigenvector with the same eigenvalue. A 
simple s tudy of  the permissible Segr6 types for R,b  (see, for example,  Hall, 
1976, 1984) then shows that  the trace-free part, /~ab, o f  R~b is either zero 
or  propor t ional  to lflb and  hence Eabcd Id = 0 ,  where E is the anti-self-dual 
part  o f  the Riemann tensor, 

where 

Rabc d Cabc d q_ Eabc d 1 = q- ggGabcd  (5) 

s = R~E~gdlb + Rbt~gcl~, G~b~d = g~t~galb 
(6) 

R,~b = Rab -- �88 = E ~cb, R = Rabg  ab 

and where the Cabcd a r e  the components  o f  the Weyl tensor. Now result 
(ii) shows that  either Cabcd is zero or  else satisfies the type N condi t ion 
Cabcd ld = O, and the fact that  I a is covariantly constant ,  together  with the 
Ricci identity, gives Rabcd ld = 0. A contract ion o f  (5) with I d then shows 
that  the Ricci scalar R -- 0. Further,  the existence o f  a dual pair  o f  covariantly 
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constant null bivectors with repeated principal null direction I now follows, 
since any null bivector F satisfying 

b F~bl b = Fab I = 0 

necessarily satisfies 
+ 4- 4- #r 

F,~b;c = F,,bqc (Fob = nab 47 iF,~b ) 

for some complex one-form on U and 
+ 

Fab;[cd I = O. 

As a consequence, qa is locally the gradient of  a complex-valued function 
tb on U, qa = th,a, and so 

+ 

(e-e~ = 0 

Finally, to show that no other independent KY tensors are admitted, note 
that another null KY tensor with a repeated principal null direction k 
distinct from l cannot be admitted because (ii) and (iii) then show that 
Cabcd ~" 0 and Rab = 0, the latter result following because the Ricci eigenvec- 
tor k must have the same eigenvalue as l, namely zero, due to the fact that 
lak" # O. The Ricci tensor then has four independent eigenvectors with zero 
eigenvalue and is thus zero and the assumption about constant curvature 
is contradicted. Similar arguments rule out the existence of a timelike KY 
tensor. I f  another null KY tensor with repeated principal null direction l 
is admitted, then it is easy to show that it must be a (constant) linear 
combination of the two covariantly constant null bivectors above and is 
therefore not independent. Consequently, if another independent KY tensor 
is admitted, then it must be spacelike, because part (vi) rules out the 
possibility of  it being nonsimple. Further, its blade most be orthogonal to 
I (otherwise an argument given above would yield the contradiction Rab = O) 
and the Weyl tensor is zero. So choose coordinates (u, v, x, y) such that the 
metric becomes [due to the covariantly constant null bivector admitted and 
the conformal flatness (Kramer  et al., 1980; see also Ehlers and Kundt, 
1962)] 

Ks 2= dx247 dy2472 du dv + ~b(u)(x2 47 y 2) du 2 (7) 

where, if la-=u~,  x a = x . ,  Ya=Y.a ,  the bivectors 21~.Xbl and 21E.yb I are 
covariantly constant. Any other possible independent KY tensor H must 
take the form 

Hab = 20d[aXbl + 2flltaYb ] + 27XtaYb ] (8) 

On substituting (8) into (1) and contracting with the tetrad vectors, one 
easily finds, first, that a and fl are independent of v, second, that y = 0, 
and, finally, that a and fl are constants. Thus, H is not independent and 
the result follows. 
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(ix) Suppose F and G are independent  nonnull ,  simple KY tensors 
whose blades intersect and span a null 3-space at each p ~ U. Clearly, F 
and G must  both be spacelike. Write Fab--2o~xEaybl with x~ya = 0, xax~ = 
Y~Ya = 1, and a a real-valued, nowhere-zero funct ion on U, and let ! be a 
null vector field on U that  lies in the above null 3-space at each p E U, so 
that l~x~ = l~ = 0. Choose  a real null tetrad (l, n, x, y)  on U. Now (ii) and 
(iii) show that  the Weyl tensor  C = 0 and that Rab = hlalb +�88 (where h 
is a nowhere-zero,  real-valued function on U, otherwise the constant-  
curvature assumpt ion would  be contradicted).  By substituting the above 
expression for F~b into (1) and contract ing with tetrad members  (see, for 
example,  Stephani,  1978), one finds that 1 is a shear-free, twist-free, rotation- 
free null geodesic  congruence  (and now 1 will be assumed affinely para- 
metrized). The rotation-free condit ion la;bman b = 0, where ~/2m ~ = x~ + iy ~, 
must also hold  for a similar null tetrad built f rom the blade of  G just as 
the present one was built f rom the blade o f  F. Since these blades are 
connected  by a proper  null rotation, one easily finds that the expansion of  
1 also vanishes. As a consequence,  I is recurrent and when this is used in 
the Ricci identity, together  with the condit ions C = 0 and Eobcdl d =  0 (the 
latter fol lowing f rom the above-obta ined canonical  form for R~b), an obvious 
contract ion gives R = 0 and hence Robcdl d = 0. The recurrence vector for l 
is thus locally a gradient  and I is scalable to a constant  null vector. A 
contradict ion now follows f rom the p roo f  o f  part  (viii), since one now has 
the condit ions under  which only null KY tensors are admitted.  

Suppose now that F and G are as above, but where their blades intersect 
and span a spacelike 3-space at each p c U. Clearly, F and G must  be 
spacelike and one can write 

F~b = 2axEoyb l, Gab = 2flyE~zb~ (9) 

where x, y, and z constitute an or thogonal  triad o f  spacelike vectors and a 
and /3 are real-valued, nowhere-zero functions on U. Let u be a timelike 
vector field or thogonal  to x, y, and z at each p ~ U. It is easily shown that 
u may be chosen to be smooth  if x, y, and z are smooth.  On substituting 
(9) into (1) and contract ing with u~u c, one finds that ~ b U,bU is or thogonal  
to x, y, and z and hence u is geodesic. Also, parts (ii) and (iii) show that 
C = 0 and that x, y, and z are Ricci eigenvectors with equal eigenvalues 
and so Rob = 3"uoub + 8g~b for real-valued functions 3/ and 6 on U. The 
conformal ly  flat Bianchi identity can now be used to show that u is hypersur-  
face or thogonal  and hence that x, y, and z are hypersurface-forming and 
that 3' and 6 are constant  on these hypersurfaces.  Thus U is (part of) a 
Rober t son-Walker  space-time. To avoid contradict ing the constant-  
curvature assumption,  one must  have 3' nowhere  zero on U, that is, for 
ene rgy-momentum tensors that arise f rom perfect fluids, p + p ~ 0, where p 
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and p are, respectively, the usual pressure and density of  the perfect fluid 
involved. 

Similar comments apply when the (nonnull) blades of F and G span 
a timelike 3-space. In this case u is a spacelike, hypersurface-orthogonal 
geodesic vector field and the "spacelike" version of the Robertson-Walker  
metric is obtained. 

From our results one can construct the following theorem governing 
the types of  space-times that admit at least two independent KY tensors. 
It should be pointed out again that the conditions placed on the KY tensors 
in the previous results were assumed to hold throughout U and it is with 
this assumption understood that the theorem is stated. 

Theorem. I f  the region U admits at least two independent KY tensors, 
then either 

(a) it is of  constant curvature and so admits ten independent KY 
tensors, or 

(b) it is (part of) a Robertson-Walker  space-time (or its "spacel ike" 
equivalent) and is not an Einstein space and admits exactly four 
independent KY tensors, or 

(c) it is a decomposable space-time of the type given in (vi) and admits 
exactly two independent KY tensors, or 

(d) it is (part of) a (necessarily type O or N)  space-time admitting a 
covariantly constant null bivector (and hence a covariantly constant 
null vector) and admits exactly two independent KY tensors. 

If, further, U is a nonflat vacuum region, it is (part of) a pp-wave space-time 
and admits exactly two independent KY tensors. 

Proof The idea of the proof  is to consider all the possibilities for two 
independent KY fields and then to use results (i)-(iv) to achieve either the 
condition (a) of the theorem (that is, to show that C = 0 and that Rab ec g,b) 
or one of the cases discussed in results (vi), (viii), or (ix). I f  one of the KY 
tensors is nonsimple, then the result (vi) shows that either (a) or (c), results 
so one can assume from now on that, at least, two independent simple KY 
F and G are admitted. I f  F and G are nonnull and determine the same 
canonical pairs of  blades at each p ~ U, so that one is timelike and one 
spacelike, then again either (a) or (c) results. If, on the other hand, their 
canonical blade pairs are different, then either their blades intersect [and 
so result (ix) shows that (a) or (b) results] or their blades intersect trivially 
in only the zero vector at each p c U (and are not orthogonal),  in which 
case C = 0 and all members of  both blades are Ricci eigenvectors with the 
same eigenvalue, Rab OC gab, and so (a) results. 

Now suppose that F is nonnull and G is null, so that, immediately, 
one has C = 0 from result (ii). I f  the blades of  F and G intersect only 
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trivially, then, as above, one obtains (a). If  their blades intersect, then the 
argument given in (ix) is easily adapted to show that (a) or (b) results 
unless F is spacelike, G null, and their blades span a null 3-space at each 
F ~ U. In this case the first part of the proof of (ix) applied to F and result 
(vii) applied to G shows that the repeated principal null direction l of G 
can be scaled so that l~;b = 0 and that a constant null bivector is admitted. 
Since this constant null bivector and its dual span all the independent KY 
tensors if (a) does not hold, one is forced here to condition (a). 

Next, suppose that F and G are both null. If  their blades do not 
intersect, then results (ii) and (iii) show that C = 0 and that Rob ec gab and 
hence (a) results. If  their blades intersect, but their repeated principal null 
directions are distinct so that the blades span a timelike 3-space at each 
p ~ U, then again C = 0 and a slight modification of the argument in the 
proof of result (ix) shows that (a) or (b) results. Finally, if their repeated 
principal null directions are the same, result (viii) shows that (d) holds. 

The statements regarding the exact numbers of independent KY tensors 
admitted in (a), (c), and (d) follow from results (i), (vi), and (viii). That 
there are exactly four when condition (b) holds can be shown, for example, 
in the Robertson-Walker case by constructing the four independent KY 
tensors that must be admitted in the intrinsic geometry of the submanifolds 
of constant curvature given in the usual coordinates by t =cons t  and 
extending them to KY tensors in U. [That there are exactly four in a 
three-dimensional space of constant curvature follows from Tachibana 
(1968).] Writing the Robertson-Walker metric in a standard chart domain 
which will be identified with U as 

ds 2 = - d t 2  + f2y~t3 dx  ~ dx  ~ (10) 

where Greek indices take the values 1, 2, and 3, where y is a 3-space metric 
of constant curvature and f2 is a positive function of t only, let G,t3 be a 
KY tensor in a particular hypersurface S given by t = to = const with the 
metric 3'. Now construct a bivector F in U as follows: let p 6 U and choose 
E,~ at p to satisfy F, ,o (p )=  O, F,~t~(p ) =f3(p)G,~t3(q) ,  where q is the unique 
point of S where the path x ~ = const from p cuts S. If G is smooth on S, 
then, since the associated projection U-~ S is smooth, F is smooth on U. 
It is easily checked that F is a KY tensor on U. The four independent KY 
tensors so generated in U are necessarily spacelike, since each must satisfy 
F~bu b = 0. Further, no other independent KY tensors can be admitted in U 
because if another one G was admitted, then clearly G~bu b = 0 must hold 
due to results (iii) and (iv) and so G gives rise, in an obvious way, to an 
intrinsic KY tensor in each of the space sections t = const. Because there 
are exactly four independent KY tensors in the intrinsic geometry of each 
t = const hypersurface, it follows that G may be written in terms of the four 
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independent KY tensors F~ in U (i = 1, 2, 3, 4), constructed as above from 
G 4 the four independent intrinsic ones in S, that is, = Y.i=l aiF~, where each 

ai depends only on t. On substituting this expression into (1) and contracting 
with u C, one obtains Y~ &~F~ =0,  where a dot denotes differentiation with 
respect to t. On restricting this equation to each of the hypersurfaces 
t = const, one finds that &~ = 0 for each i and so each a~ is constant on U. 
This contradicts the independence of G and completes the proof. 

3. DISCUSSION 

A number  of  corollaries follow from the theorem of the last section. 
For example, it follows that the total number  of  independent KY tensors 
in U is either none, one, two, four, or ten (none, one, two, or ten in vacuo). 
I f  the energy-momentum tensor in U is that of  a Maxwell field, then in the 
total number  of  independent KY tensors admitted is either none, one, or 
two and, in the last case, the null and nonnull Maxwell fields come under 
conditions (d) and (c) of  the theorem, respectively. [It is clear from results 
(ii) and (iii) of  the last section and the algebraic structure of  the associated 
energy-momentum tensor that if  a null (nonnull) Maxwell field admits a 
KY tensor then the latter must be null (nonnull); cf. Van Leeuwen (1981).] 
I f  the energy-momentum tensor in U is that of  a perfect fluid where the 
pressure and density satisfy p + e # 0, the number  of  independent KY tensors 
admitted is either none, one, or four and they are necessarily spacelike. It 
is also perhaps of  interest to note how result (ix) of  the last section provides 
a characterization of Robertson-Walker  metrics. This is brought out in the 
following corollary. 

Corollary. I f  no point of  U has constant curvature and at least two 
independent KY tensors are admitted, then either case (b) of  the theorem 
holds, in which case exactly four independent KY tensors are admitted and 
no KY tensor is covariantly constant, or exactly two independent KY tensors 
are admitted and all KY tensors are covariantly constant. 

To prove this, it is required only to show that no KY tensor in case 
(b) is covariantly constant. This follows easily because if a (necessarily 
spacelike) covariantly constant one is admitted, its (timelike) dual is also 
covariantly constant and hence a KY tensor and result (iii) in Section 2 
complete the contradition, since one would obtain Rab OC gab and constant 
curvature in U. 

It is also noted that the "spacelike" Robertson-Walker  metrics in 
condition (b) of the theorem can be eliminated by imposing the usual 
"dominant  energy conditions" on U (see, for example, Kramer et al., 1980). 

It should be pointed out that there are several errors in a recent paper  
dealing with KY tensors (Taxiarchis, 1985). In this reference there is some 
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confus ion  over  the  con fo rma l ly  flat case and  the genera l i ty  o f  the energy-  
m o m e n t u m  tensors  d iscussed.  Also,  there  is an a p p a r e n t  error  in the final 
sect ion o f  this reference,  where  it is c la imed  that  the exis tence o f  a single 
null  K Y  tensor  impl ies  that  its (expans ion- f ree ,  twist-free,  shear-free,  
geodes ic)  r epea ted ,  p r inc ipa l  null  d i rec t ion  can be sca led  so that  its ro ta t ion  
is zero. I canno t  see how this can be done  and  feel that  results  (vii) and  
(viii) above  summar i ze  the correct  solut ion.  

M y  a t ten t ion  has also recent ly  been  d rawn to two fur ther  references  
(Dietz  and  Rfidiger,  1981, 1982), which give a very general  d i scuss ion  o f  
K Y  tensors.  However ,  these  references  also conta in  some confus ing  state- 
ments  conce rn ing  the Pet rov types.  
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